Transcription-dependent recombination induced by triple-helix formation.
نویسندگان
چکیده
The homologous recombination between direct repeat sequences separated by either 200 or 1000 bp was induced by active transcription of the downstream gene when poly(dG)-poly(dC) sequences exist between the two direct repeats. This dG tract-mediated and transcription-induced recombination was RecA independent, and the frequency of recombination was dependent on both the length and the orientation of the poly(dG)-poly(dC) sequences relative to the gene. An intramolecular dG.dG.dC triplex formation was detected in Escherichia coli cells in a length-dependent manner when the transcription of the downstream gene was activated. We suggest that the negative superhelical strain generated by active transcription of the downstream gene induces poly(dG)-poly(dC) sequences to adopt a triple-helix structure in vivo and that this structure brings two remote sequences together to stimulate homologous recombination.
منابع مشابه
Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway.
The ability to stimulate recombination in a site-specific manner in mammalian cells may provide a useful tool for gene knockout and a valuable strategy for gene therapy. We previously demonstrated that psoralen adducts targeted by triple-helix-forming oligonucleotides (TFOs) could induce recombination between tandem repeats of a supF reporter gene in a simian virus 40 vector in monkey COS cells...
متن کاملTriple helix formation by purine-rich oligonucleotides targeted to the human dihydrofolate reductase promoter.
The ability of oligodeoxynucleotides to form specific triple helical structures with critical regulatory sequences in the human dihydrofolate reductase (DHFR) promoter was investigated. A battery of purine-rich oligonucleotides targeted to the two purine.pyrimidine strand biased regions near the DHFR transcription initiation site was developed. The stable triple helical structures formed by bin...
متن کاملInhibition of HIV-1 reverse transcription by triple-helix forming oligonucleotides with viral RNA.
Reverse transcription of retroviral RNA into double-stranded DNA is catalyzed by reverse transcriptase (RT). A highly conserved polypurine tract (PPT) on the viral RNA serves as primer for plus-strand DNA synthesis and is a possible target for triple-helix formation. Triple-helix formation during reverse transcription involves either single-stranded RNA or an RNA.DNA hybrid. The effect of tripl...
متن کاملRelief of triple-helix-mediated promoter inhibition by elongating RNA polymerases.
We have characterized triple-helix-mediated inhibition of an artificial bacteriophage promoter with respect to relief of inhibition by incoming RNA polymerases that initiate upstream or downstream from the operator sequence. Whereas oligonucleotide-directed triple-helix formation inhibits the test promoter, promoter activity is restored when the triple-helical complexes are disrupted by transcr...
متن کاملRepair and recombination induced by triple helix DNA.
Triple-helix DNA structures can form endogenously at mirror repeat polypurine/polypyrimidine sequences or by introduction of triplex-forming oligonucleotides (TFOs). Recent evidence suggests that triple helices are sources of genetic instability, and are subject to increased rates of mutagenesis and recruitment of repair factors. Indeed, observations using TFOs suggest that triple helices provo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 7 9 شماره
صفحات -
تاریخ انتشار 1993